Tuesday, 29 September 2020

Multiple Choice Question (MCQ) on Direct and Bending Stresses (SA-I Module 02)

Subject: Structural Analysis-I (SA-I)/ TOS/ Structural Mechanics

1.   If load is acting on the longitudinal axis of column, it is called          .

a)      Horizontal load

b)     Axial load

c)      Eccentric load

d)     Vertical load

Ans: b

Explanation:- if load is acting on the longitudinal axis of column, it is called as axial load. And if load is acting at an eccentricity from the axial axis of column then its is called as eccentric load.

                   

2.   If load is acting away from the longitudinal axis of column, it is called                    .

a)     Horizontal load

b)     Axial load

c)     Eccentric load

d)     Vertical load

Ans: c

Explanation:- if load is acting on the longitudinal axis of column, it is called as axial load. And if load is acting at an eccentricity from the axial axis of column then its is called as eccentric load.

 

3.                   The horizontal distance between the longitudinal axis of column and the line of action of load is called        .

a)      Eccentricity

b)      Axial distance

c)      Vertical distance

d)      None of these

Ans: a

 

4.                     In the column, axial load produces

a)      Both direct and bending stress

b)      Bending stress

c)      Direct stress

d)      None of these

Ans: c

Explanation:- in column axial load produce only direct stresses (P/A) at the base. Whereas eccentric load produce both direct and bending stresses at the base.

 

5.                     In the column, eccentric load produces

a)      Both direct and bending stress

b)      Bending stress

c)      Direct stress

d)      None of these

Ans: a

Explanation:- in column axial load produce only direct stresses (P/A) at the base. Whereas eccentric load produce both direct and bending stresses at the base.


6.                     Maximum stress (σmax) =

a)      Direct stress (σ0) x Bending stress  b)

b)      Direct stress (σ0) - Bending stress  b)

c)      Direct stress (σ0) + Bending stress b)

d)      Direct stress (σ0) / Bending stress b)

Ans: c 

7.                     Minimum stress (σmin) =

a)      Direct stress (σ0) x Bending stress  b)

b)      Direct stress (σ0) - Bending stress  b)

c)      Direct stress (σ0) + Bending stress b)

d)      Direct stress (σ0) / Bending stress b)

Ans: b

8.                     For rectangular section, Maximum stress max) =

a)     P/A (1+6e/b)

b)     P/A(6e/b)

c)     P/A(1/6e)

d)     P/A (1-6e/b)

Ans: a

9.                     For rectangular section, Minimum stress min) =

a)     P/A (1+6e/b)

b)     P/A(6e/b)

c)     P/A(1/6e)

d)     P/A (1-6e/b)

Ans: d

 

10.                 The maximum distance of load from the centre of column, such that if load acts within this distance there is no tension in the column. This maximum distance is called                        .


a)               Axial distance

b)               Vertical distance

c)               Limit of Eccentricity

d)               Eccentricity

Ans: c

11.                 When load is acting within e limit, σmin  will be              .

a)               Tensile

b)               Compressive

c)               Zero

d)               None of these

Ans: b

12.                 When load is acting at the point of e limit, σmin will be _         .

a)               Tensile

b)               Compressive

c)               Zero

d)               None of these

Ans: c

13.                 When load is acting beyond e limit, σmin  will be              .

a)               Tensile

b)               Compressive

c)               Zero

d)               None of these

Ans: a

14.                 For no tension in column

a)               Load must act within elimit

b)               σ0 > σb

c)               e ≤ b/6

d)               Any one of the above

Ans: d

15.                 The centrally located portion of a section within the load line falls so as to produce only compressive stress is called as                                    .

a)     Core of section

b)    Limit of eccentricity

c)     Middle third rule

d)    None of the above

Ans: a 

16.                 Limit of eccentricity for solid circular section is given by      

a)     D/8

b)     D/6

c)     D/5

d)     None of these

Ans: a 

17.                 Limit of eccentricity for rectangular section is given by

              a)      d/6 or b/6

              b)     d/4 or b/4

              c)      d/8 or b/6

              d)     d/6 0r b/8

Ans: a 

18.                 For no tension condition in the base of a short column of hollow circular cross section, the limit of eccentricity is

a)      (D2 + d2) /8d

b)     (D2 + d2) /6d

c)      (D2 + d2) /8D

d)     (D2 + d2) /6D

Ans: c

 

19.                 Calculate core of section for circular column of diameter 400mm.

a)               60mm

b)               75mm


c)               55mm

d)               50mm

Ans: d

Explanation:- core of the section is the central portion of radius  D/8. i.e 400/8=50 mm

 

20.                 Calculate core of section for rectangular section of size 250mm x 500mm.

a)      41.66mm and 83.33mm

b)     52.66mm and 81.33mm

c)     31.66 mm and 73.33mm

d)     55.66mm and 85.66mm

Ans: a

Explanation:- core of the section for rectangle is the central parallelogram portion of having edge distance at D/6 or B/6 from mid point or cg of section. i.e 250/6 or 500/6=41.66mm or 83.33mm

 

21.                 For rectangular chimney coefficient of wind resistance is

a)               1.5

b)               2

c)               1

d)               0.5

Ans: c 

22.                 For circular chimney coefficient of wind resistance is  

a)     0.87

b)     0.57

c)     0.47

d)     0.67

Ans: d 

23.                 For solid circular chimney of diameter D section modulus is given by

a)               πD3/32

b)               πD3/16

c)               πD3/8

d)               πD3/12

Ans: a

 

24.                 For hollow circular chimney of external diameter D and internal diameter d section modulus is given by

a)               Π(D4-d4)/16D

b)               Π(D4-d4)/12D

c)               Π(D4-d4)/32D

d)               Π(D4-d4)/22D

Ans: c

 

25.                 For hollow square section having B x B as external dimension and b x b as internal dimension section modulus is given by

a)               (B4-b4)/6B

b)               (B4-b4)/6b

c)               (B4+b4)/6B

d)               (B4+b4)/6b

Ans: a

 

26.                 In rectangular chimney if wind pressure acts on projected area of width b then section modulus is given by

a)               bd2/8

b)               bd2/6

c)               bd2/4

d)               bd2/3

Ans: b

 

27.                 In rectangular chimney if wind pressure acts on projected area of thickness d then section modulus is given by

a)               db2/8

b)               db2/4

c)               db2/3

d)               db2/6

Ans: d

 

28.                 A rectangular column is 200mm wide and 100mm thick. It is carries a load of 180KN at an eccentricity of 100mm in the plane bisecting thickness. Find direct stress.


a)               9N/mm2

b)               8N/mm2

c)               7N/mm2

d)               6N/mm2

Ans: a

Explanation:- direct stress = P/A

                                             = 180x1000/(200x100) = 9 N/mm2

 

29.                 A rectangular column is 200mm wide and 100mm thick. It is carries a load of 180KN at an eccentricity of 100mm in the plane bisecting thickness. Find bending stress.

               a)   25.99N/mm2

               b)   26.99N/mm2

               c)   27.99N/mm2

               d)   22.99N/mm2

Ans: b

Explanation:- bending stress = M/z

                                                = (180x1000x100)/(100x2002/6)  = 27 N/mm2

 

30.                 A hollow circular steel column having external and internal diameter 500mm and 300mm respectively carries an eccentric load of 200kN acting at eccentricity of 60mm. find direct stress.

               a) 1.69N/mm2

               b)   2.79N/mm2

               c)   1.59N/mm2

               d)   2.29N/mm2

Ans: c 

31.                 A hollow circular steel column having external and internal diameter 500mm and 300mm respectively carries an eccentric load of 200kN acting at eccentricity of 60mm. find bending stress.

               a) 1.12N/mm2

               b)   2.12N/mm2

               c)   1.59N/mm2

               d)   2.29N/mm2

Ans: a

 

32.                 A masonary wall 10m high, 3m wide and 1.5m thick is subjected to a wind pressure of 1200N/m2 Find direct stress. If unit weight of masonary is 20kN/m3.

a)               250kN/m2

b)               200kN/m2

c)               225kN/m2

d)               175kN/m2

Ans: b

33.                 A masonary wall 10m high, 3m wide and 1.5m thick is subjected to a wind pressure of 1200N/m2 Find bending stress. If unit weight of masonary is 20kN/m3.

a)               50kN/m2

b)               45kN/m2

c)               35kN/m2

d)               40kN/m2

Ans: d 

34.        A square chimney 3m x 3m outside and 0.375m thick is 20m high. A wind pressure intensity 1.2kN/m2 is acting on it. If specific weight of chimney is 18kN/m3 Find direct stress at the base of chimney.

a)               260kN/m2

b)               360kN/m2

c)               350kN/m2

d)               460kN/m2

Ans: b 

Explanation:- direct stress = density x h = 18 x 20 = 360 kN/m2

35.                 A square chimney 3m x 3m outside and 0.375m thick is 20m high. A wind pressure intensity 1.2kN/m2 is acting on it. If specific weight of chimney is 18kN/m3 Find bending stress at the base of chimney.

               a)   233.77kN/m2

               b)   333.77kN/m2

               c)   350.77kN/m2

               d)   460.77kN/m2

Ans: a 

36.        The ratio of the length and diameter of a simply supported uniform circular beam which experiences maximum bending stress equal to tensile stress due to same load at its mid span, is

a) 1/8

b) 1/4

c) 1/2

d) 1/3

Answer: c

Explanation: Bending Stress = M/Z, Tensile stress = P/A

                   FROM QUESTION, Bending stress = Tensile stress

                                                     i.e. M/Z = P/A

                                                          M = PL/4, Z = (π * D3)/32 , A = (π*D2)/4

                  after putting these values

                                                      L/D = ½

37.      Simply supported rolled steel joist 8 m long carries a uniformly distributed load over it span so that the maximum bending stress is 75 N/mm². If the slope at the ends is 0.005 radian and the value of E = 0.2 × 106 N/mm², the depth of the joist, is

                   a)   200 mm

b)      250 mm

c)      300 mm

d)     400 mm

Answer: d

Explanation: Slope = wl^3/24EI.

                         0.05 = wl^3/24EI.

                              I = wl^3/24000.

        We know that,  F/Y = M/I

                      here F = 75N/mm2., Y = d/2. & L = 8000mm.

         by substituting values an solving we will get, d = 400 mm

 

38.     The ratio of the length and depth of a simply supported rectangular beam which experiences maximum bending stress equal to tensile stress, due to same load at its mid span, is

a)  1/2

b)  2/3

c)  1/4

d)  1/3

Answer: b

Explanation:-Bending Stress=M(max)/Z =(PL/4)/(I/y)

                                                =(PL/4)/[(bd^3/12)/(d/2)]

                                                =(PL/4)/[bd^2/6]

                                                =3PL/2bd^2

                          Now,

                              Tensile Stress=P/A =P/bd.

                  Since, according to question,

                  Bending Stress=Tensile Stress

                            PL/2bd^2=P/bd.

                                      L/d=2/3

39.    The ratio of the area of cross-section of a circular section to the area of its core, is

a)  4

b)  8

c)  12

d)  16

Answer: d

Explanation:-Area or column = π x D2/4

Radius of core, r = D/8

Area of core = π x r2 = π x (D2)/64

Ratio , (π x D2/4 ) / (π x (D2)/64) = 64/4 =16

40.   The assumption in the theory of bending of beams is:

                    a)  Material is homogeneous

                    b)  Material is isotropic

                    c)  Young’s modulus is same in tension as well as in compression

                     d)  All the above

Answer: d

41.  A dam means

          a) Water retaining structure

          b) Soil retaining structure

          c) Cross Draining work

          d) Water treatment structure

Ans: a

42.  Tension occurs in a dam section at  

         a) Heel

         b) Toe

         c) At centre of base

         d) Top edge

Ans: a

43. Formula for eccentricity

          a) e = z - b/2

         b) e = z + b/2

         c) b/2 - z

         d) b/2 + z

Ans: a

 

44. According to middle third rule  ‘e’ should be less than

            a)  b/2 

            b)  b/6

            c)  z/6

            d)  z/2

Ans: b

 

45. If  ‘e’ > b/6  ------------  occurs   at   heel

            a) tension

            b) compression

            c) bending

            d) shear

Ans: a

46. The most commonly used section for a dam is

          a) Rectangular section

          b) Triangular section

          c) Trapezoidal section

          d) Any section

Ans: c

 

47. The minimum base width for a rectangular section  is

          a) H/ ÖS

          b) H/ S2

          c) H/S

          d) H2/S

Ans: a

 

48. In masonry dam total horizontal thrust is 120MN and total vertical force is 300MN.If the coefficient friction at base is 0.8 factor of safety against sliding is -------

          a) 1.0

          b) 1.5

          c) 2.0

          d) 2.5

Ans: c

 

49. The structure constructed for retaining the earth at their back is called

         a) Retaining wall

         b) Dam

         c) Intake

         d) Retaining well

Ans: a

 

50. Due to active earth pressure the retaining wall may slide -------------

       a) Away from back fill

       b) To wards back fill

 Ans: a

 

51. Due to passive earth pressure the retaining wall may slide -------------

       a) Away from back fill

       b) Towards back fill

Ans: b

 

52. What are the various forces acting  on the retaining wall.

(a)  Earth pressure

(b)  Wt.of retaining wall

(c)  None of the above

(d)   Both (a) and (b)

Ans: d

 

53. If the resultant passes within the base of the retaining wall , there is no

    (a) Tension

    (b) Compression

    (c) Sliding

    (d) Over turning

Ans: c

 

54. For check against sliding

   (a) µw = p

   (b) µw > p

   (c) µw < p

   (d) µw = 0

Ans: b

55. If Z and I are the section modulus and moment of inertia of the section, the shear force F and bending moment M at a section are related by

    (a) F=M/y xI

    (b) F=M/Z

    (c) F=dM/dx

    (d) F=∫M dx

Ans: c

56. The section modulus of a rectangular section is proportional to

    (a) area of the section

    (b) square of the area of the section

    (c) product of the area and depth

    (d) product of the area and width

Ans: a

57. Stress may be expressed in Newtons

    (a) per millimetre square (N/mm2)

    (b) per centimetre square (N/cm2)

    (c) per metre square (N/m2)

    (d) All of the above

Ans: d

58. The centre of gravity of a trapezoidal dam section whose top width is a, bottom width is b and the vertical side is a, from its vertical face is

    (a) (a2+ab+b2)/3(a+b)

    (b) (b2+bc+c2)/3(b+c)

    (c) (a2+ab+c2)/3(a+c)

    (d) none of these

Ans: a

59. A rectangular bar of width b and height h is being used as a cantilever. The loading is in a plane parallel to the side b. The section modulus is

    (a) bh3/12

    (b) bh2/6

    (c) b2h/6

    (d) none of these

Ans: c

Assignment on Design of Steel Structures

  Module -I (Introduction & Connections) 1. Write down the advantages and disadvantages of Steel as Construction Material? 2. Which are ...